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ABSTRACT

Plant breeding has been very successful in development of Climate Resilient
and improved varieties using conventional tools and methodologies. Combination of
various techniques which includes novel genetic tools and modern genetic and
breeding approaches should increase efficiency and precision that have a great
potential to impact crop breeding. Next Generation Sequencing (NGS) technologies
are allowing the sequencing of genomes and transcriptomes, which is producing a
vast array of genomic information with high precision. The analysis of NGS data by
means of bioinformatics developments allows discovering new genes and regulatory
sequences and their positions, and makes available large collections of molecular
markers. TILLING and EcoTILLING make possible to screen mutant and
germplasm collections for allelic variants in target genes. Advanced backcross QTL
(AB-QTL) analysis is a potential solution by combining the discovery and transfer
of valuable QTLs from wild germplasm into elite breeding lines into a single
process. To comprehensively understand functional genomics regarding overall
plant development, the advanced tools of metabolomics, together with QTL analysis,
GWAS and knock-out/down technology have great importance. In conclusion,
recent advances in genomics are providing plant breeders with new tools and
methodologies that allow a great leap forward in plant breeding and the genetic
dissection and breeding for complex traits.

KEY WORDS: AB-QTL, EcoTILLING, Genomics, Metabolomics, TILLING,
Transcriptomes,

INTRODUCTION

Ever since the beginnings of
the domestication of plants and 10,000
years ago, plant breeding has been
extremely successful in developing
crops and varieties that have
contributed to the development of
modern societies, and have
successively beaten (neo-) Malthusian
predictions (Fedoroff, 2010). It has

been predicted for over two decades
that molecular marker technology
would reshape breeding programmes
and facilitate rapid gains from
selection (Stuber et al., 1982; Tanksley
et al. 1982). Currently, however,
marker-assisted selection (MAS) has
failed to significantly  improve
polygenic traits (Bernardo, 2008; Xu,
Y. and Crouch, 2008). While MAS has
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been effective for the manipulation of
large effect alleles with known
association to a marker (Zhong et al.,
2006), it has been at an impasse when
many alleles of small effect segregate
and no substantial, reliable effects can
be identified (Moreau et al., 2004).

Nowadays, genomics provides
plant breeders with a new set of tools
and techniques that allow the study of
the whole facilitating the direct study
of the genotype and its relationship
with the phenotype (Tester and
Langridge, 2010). Genomes of plants
have been subjected to structural as
well as functional genomics research,
which during the last two decades
covered both basic and applied aspects
of research. The combination of
conventional  breeding  techniques
along with genomic tools and
approaches is leading to a new
genomics-based plant breeding, also
known as integrated plant breeding
platform. In this new plant breeding
context, genomics will be essential to
develop more efficient plant cultivars,
which are necessary, according to
FAO, for the new 'greener revolution’
needed to feed the world’s growing
population while preserving natural
resources (Perez-de-Castro et al.,
2012).

Advances in genomics can also
contribute to crop improvement in two
general ways. First, a better
understanding of the Dbiological
mechanisms can lad to new or
improved  screening methods  for
selecting superior genotypes more
efficiently. Second, new knowledge
can improve the decision-making
process for more efficient breeding
strategies (Varshney et al., 2005). One
of the main pillars of genomic
breeding is the development of high-
throughput DNA sequencing
technologies, collectively known as
next generation sequencing (NGS)

methods. These and other technical
revolutions  provide  genome-wide
molecular tools for plant breeders
(large collections of markers, high-
throughput genotyping strategies, high
density genetic maps, new
experimental populations) that can be
incorporated into existing breeding
methods (Varshney and Tuberosa,
2007a; Varshney and Tuberosa, 2007b;
Tester and Langridge, 2010; Lorenz et
al., 2011).

Recent advances in genomics
are producing new plant breeding
methodologies, improving and
accelerating the breeding process in
many ways (e.g., association mapping,
marker assisted selection, breeding by
design, gene pyramiding, genomic
selection, etc.) (Peleman and van der
Voort, 2003; Collard and Mackill,
2008). Genomic tools are thus,
facilitating the detection of QTLs and
the identification ~ of  existing
favourable alleles of small effect,
which  have frequently remained
unnoticed and have not been included
in the gene pool used for breeding
purpose (Morgante and Salamini,
2003; Vaughan et al., 2007).

In addition to above mentioned
approaches, some novel technologies
e.g. TILLING, ecotype TILLING (Eco
TILLING), Genome Wide Association
(GWA) and Sequencing of RNA
Transcripts (RNA-seq) technologies
have also emerged during last decade
that are considered to have greater
impact on plant genetics research and
breeding programmes. This article
provides an overview on some selected
genomics technologies, their potential
and limitations for accelerating crop
improvement programmes.
1.Sequencing
First-Generation Sequencing

The automated Sanger method
is considered as a ‘first-generation’
technology. It has been wused to
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sequence many genomes as well as
several transcriptomes. The first
international  collaborative  project
resulted in the whole genome sequence
of the model plant Arabidopsis
thaliana (The Arabidopsis Genome
Initiative. 2010) and then number of
crops such as rice (International Rice
Genome Sequencing Project. (2005),
maize (Schnable et al., 2009), sorghum
(Paterson et al., 2009) and soybean
(Schmutz et al, 2010). The
transcriptomes of most major crops, to
a greater or lesser extent, were also
sequenced in recent past.
Next-Generation Sequencing (NGS)

Despite many technical
improvements during this era, the
limitations of automated Sanger
sequencing showed a need for new and
improved technologies for sequencing
large numbers of human genomes.
Recent efforts have been directed
towards the development of new
methods, leaving Sanger sequencing
with ~ fewer  reported  advances
(Metzker, 2005; Hutchison, 2007)
Sequencing technologies include a
number of methods that are grouped
broadly as template preparation,
sequencing and imaging, and data
analysis. The unique combination of
specific protocols distinguishes one
technology = from  another  and
determines the type of data produced
fromeach platform.

Moreover, new “third
generation” platforms are Dbeing
developed and incorporated to
sequencing projects, such as PacBio
(Pacific Biosciences), Helicos or lon
Torrent. Many transcriptomes have
also been sequenced, a number of them
in several species such as sweet potato
(Wang et al., 2011) or buckwheat
(Logacheva et al., 2011) for which no
previous sequence information was
available. These assays are showing
the great complexity of plant

transcriptomes, allowing the
identification of rare transcript variants
that are being used to improve gene
explanation and our knowledge with
related to gene function and regulation.
Bioinformatics

NGS technologies are
facilitating sequencing projects, but
have brought new challenges, as
millions of short DNA reads have to be
analysed and assembled (Metzker,
2010). Therefore, it is necessary to
develop new bioinformatics tools
(algorithms and software), which allow
the analyses of huge amounts of
genome-wide data, but it is also
necessary to change the approaches
used to understand complex biological
traits (Pop and Salzberg, 2008; Horner
et al., 2009). Two of the most common
analyses carried out on these NGS
reads are genome assembly and
annotation and mapping. Genome
assembly is a complex task requiring
powerful computers and skilled
bioinformaticians (Pop and Salzberg,
2008). Several bioinformatic tools and
databases (Table 1) have been
developed for DNA sequence analysis,
marker discovery and querying and
analyzing information.
2. TILLING and EcoTILLING

Progress in plant breeding in
terms of development of superior and
high yielding varieties of agricultural
crops is possible by accumulation of
beneficial alleles from wvast plant
genetic resources existing worldwide.
But still, a significant portion of these
superior alleles cannot be used,
because those alleles are left behind
during evolution and domestication
(Reddy et al., 2014). This untapped
genetic variation existing in wild
relatives and land races of crop plants
could be exploited gainfully for
development of agronomically superior
cultivars.  Introgressions of novel
alleles from wild relatives of crop
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plants into  cultivated  varieties
(McCouch et al., 2007) have clearly
demonstrated that certain alleles and
their combinations potentially make
dramatic changes in trait expression
when moved to a suitable genetic
background by overcoming the genetic
bottlenecks which restricted their
introgression to cultivars.

TILLING (Targeting induced
local lesions in genomes), a newly
developed general reverse genetic
strategy, helps to locate an allelic
series of induced point mutations in
genes of interest. It allows the rapid
and inexpensive detection of induced
point mutations in populations of
physically/chemically mutagenized
individuals. In addition to allowing
efficient detection of mutations by
TILLING approach, ECOTILLING
technology is also ideal for examining
natural variation (Rashid et al., 2011).
Allele mining can also be used for
screening and detection of plants with
desired characters by knockdown and
knockout mutations in specific genes,
which makes TILLING and
EcoTILLING as an attractive strategy
for a wide range of applications from
the basic functional genomic study to
practical crop breeding approaches.

Success of the identification of
present variation useful for breeding
programmes will depend on the right
identification of target genes. The
availability of sequences coming from
sequencing  projects  and the
information  provided by gene
expression studies is significantly
increasing the number and quality of
candidates  for ~ TILLING and
ECOTILLING studies. TILLING has
been successfully used in Arabidopsis
(Colbert et al., 2001), Lotus (Perry et
al., 2003), barley (Caldwell et al.,
2004) and maize (Weil and Monde,
2007). EcoTILLING was first applied
in Rice (Kadaru et al., 2006) and

subsequently, in barley (Mejlhede et
al., 2006) and wheat (Wang et al.,
2008)
3. Advancement in QTL Analysis
AB-QTL

Plant breeding involving wild
species, there are two common
weaknesses:  first, the population
segregates for a large percentage of
genes from the wild parent, thus
resulting in lower statistical power to
detect QTLs with small effects (Chee
et al, 2005). Secondly, once
potentially  valuable QTLs are
discovered, substantial backcrossing
and intercrossing are likely to be
required for the development of
commercial cultivars. Separating QTL
discovery and cultivar development
into discrete and sequential steps not
only increases the time required for
new cultivar development, but also
reduces the likelihood that the QTL
information is used to create a superior
crop cultivar (Tanksley and Nelson,
1996). Advanced backcross QTL (AB-
QTL) analysis is a potential solution
by combining the discovery and
transfer of valuable QTLs from wild
germplasm into elite breeding lines in
a single process. In the advanced
backcross (AB) design, QTL analysis
will be delayed until a later generation
like the BC, or BC3 generation. The
logic behind this approach is that the
effect of individual QTLs can be more
precisely measured because
undesirable effects of wild species on
the elite background are reduced since
later generation progenies such as BC,
or BCs carry a smaller number of
genes from the donor parent (Baohua
and Chee, 2010). AB-QTL has been
successfully used in tomato (Stevens et
al., 2007), rice (Manosalva et al.,
2009), wheat (Naz et al., 2008) and
maize (Mano and Omori, 2008).
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mQTL and mGWAS

Plants produce large numbers
of metabolites of diversified structures
and abundance that play important
roles in plant growth, development and
varied response to environments.
These diverse small molecular weight
metabolites, the chemical base of crop
yield and quality, are also valuable
nutrition and energy sources for human
beings and live stocks (Hall et al.,
2008). Although metabolomics is
downstream of the other functional
genomics (transcriptomics and
proteomics), the practical size of the
metabolome of a species, unlike
transcriptome or proteome, cannot be
speculated directly by known genomic
information via central dogma.
Therefore, metabolomics is used to
obtain a large amount of valuable
information for the discovery of genes
and pathways through accurate and
high  throughput corollary peak
annotation via snapshotting the plant
metabolome (Tohge et al., 2014).

With  the  advance of
sequencing technology, dozens of plant
species have been sequenced. To
comprehensively  understand  the
functional genomics regarding plant
development, importance of advanced
tools of metabolomics, together with
QTL (quantitative trait locus) analysis,
GWAS (genome-wide association
study), and knock-out/down
technology, has been increasingly
recognized within the plant science
community (Hong et al., 2016). In
Arabidopsis, the analysis of 369
recombinant inbred lines and 41
introgression lines indicated that the
metabolite  heterosis is primarily
contributed by epistasis (Schauer et al.,
2006). In tomato, metabolite profiling
in seeds of 76 introgression lines in
two consecutive harvest seasons
revealed the presence of 30 metabolite
quantitative trait loci (mQTLs) and

dissected partial mechanisms,
underlying the variational contents of
main primary metabolites (Lisec et al.,
2009). Similar mQTL analyses have
been performed in other plant species,
such as wheat (Hill et al., 2015), rice
(Matsuda et al., 2012) and rape (Feng
et al., 2012).
Marker- Assisted Backcrossing

Once the markers associated
with a trait of interest is identified
through linkage mapping, association
mapping, AB-QTL or transcriptomics
approach, the next step is to use these
markers in actual breeding programme
(Utomo and Linscombe, 2009). In this
context, the selection of one or a few
genes (QTLs) through molecular
markers using backcrossing is a highly
efficient techniqgue (Collard and
Mackill, 2008). There are three levels
of MABC (i) foreground selection
(Hospital, F. and Charcosset, 1997),
which includes screening of target
gene or QTL using molecular markers,
this step can also be used for selection
of recessive allele for backcrossing as
recessive alleles require one generation
of selfing for its expression, (ii)
recombinant  selection  involves
selection of the BC progeny containing
the target gene and recombination
events (between the target locus and
linked flanking markers). The purpose
of this selection step is to minimize the
‘linkage drag’ by using markers that
flank the target gene. This linkage drag
poses a big problem during selection
through conventional breeding
methods. Furthermore this
recombination selection event is
usually carried out using two BC
generations (Frisch et al., 1999), and
(iii) background selection involves
use of markers that are unlinked to the
target locus for the selection of BC
progeny containing the  highest
proportion of recurrent parent (RP).
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4. Genomic selection

The weaknesses of traditional
MAS come from the way MAS splits
the task into two components, first
identifying QTL and then estimating
their effects (Jannink et al., 2010).
QTL identification methods can make
MAS  poorly suited to crop
improvement: (1) biparental
populations may be used that are not
representative and in any event do not
have the same level of allelic diversity
and phase as the breeding programme
as a whole (Jannink et al., 2001;
Sneller et al., 2009); (ii) the necessity
of generating such populations is
costly such that the populations may be
small and therefore, underpowered,;
(iii) validation of discoveries is then
warranted, requiring additional effort;
(iv)  the separation of QTL
identification from estimation means
that estimated effects will be biased
(Beavis, 1994; Melchinger et al., 1998;
Schon et al., 2004), and small-effect
QTL will be missed entirely (Lande
and Thompson, 1990) as a result of
using stringent significance thresholds.

To minimize the limitations for
successful MAS, Lande and Thompson
(1990) proposed a visionary two steps
approach: (i) select significant markers
from large marker sets, and (ii)
combine phenotypic information with
significant markers in a selection index
that would explain a significant
proportion of additive genetic variance.
In the first step, they were unable to
estimate all marker effects
simultaneously with simple regression
due to the lack of degrees of freedom.
Therefore, they proposed selecting the
most significant markers from the
previous generation via multiple linear
regressions and then re-estimating
effects of the selected markers in the
current generation with independent
multiple regressions. Genomic
selection s a form of MAS that

simultaneously estimates all locus,
haplotype, or marker effects across the
entire genome to calculate genomic
estimated breeding values (GEBVS)
(Meuwissen et al., 2001). This
approach  contrasts  greatly  with
traditional MAS because there is not a
defined subset of significant markers
used for selection. Instead, GS
analyzes jointly all markers on a
population attempting to explain the
total genetic variance with dense
genome wide marker coverage through
summing marker effects to predict
breeding value of individuals
(Meuwissen et al., 2001). The central
process of GS is the calculation
GEBVs for individuals having only
genotypic data using a model that was
“trained” from individuals having both
phenotypic and genotypic data (Figure
1) (Meuwissen et al., 2001). The
population of individuals with both
phenotypic and genotypic data is
known as the “training population” as
it is used to estimate model parameters
that will subsequently be used to
calculate GEBVs of selection
candidates (e.g., breeding lines) having
only genotypic data (Figure 1). These
GEBVs are then used to select the
individuals for advancement in the
breeding cycle. Therefore, selection of
an individual without phenotypic data
can be performed by using a model to
predict the individual’s breeding value
(Meuwissen et al., 2001). To maximize
GEBV  accuracy, the training
population must be representative of
selection candidates in the breeding
program to which GS will be applied.
A selection index integrates
and weights multiple traits to achieve
greater gains than if traits with
independent thresholds are individually
or collectively selected (Hazel and
Lush, 1942; Hazel, 1943). Selection
indices can incorporate marker data as
indirect selection traits ((Meuwissen et
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al., 2001; Neimann-Sorensen and
Robertson, 1961; Smith, 1967).
However, current MAS applied to loci
selected by SR violates the selection
index assumptions of multivariate
normality and small changes in allele
frequencies because selection is based
on only few Ilarge effect loci
((Meuwissen et al.,, 2001; Dekkers,
2007). Because GS is based on many
markers distributed throughout the
genome, index selection assumptions
are met, providing an opportunity to
use index selection theory to predict
response to GS (Dekkers, 2007).

Traditional marker-assisted
selection has been ineffective for
complex traits. The introduction of
genomic selection (GS), however, has
shifted that paradigm. Rather than
seeking to identify individual loci
significantly associated with a trait, GS
uses all marker data as predictors of
performance and consequently delivers
more accurate predictions. Selection
can be based on GS predictions,
potentially leading to more rapid and
lower cost gains from breeding
(Jannink et al., 2010).
Integrated Plant Breeding

Genomics research is
generating new tools, such as
functional molecular markers and
bioinformatics, as well as new
knowledge about statistics and
inheritance phenomena that could
increase the efficiency and precision of
identification of QTL. Sequencing can
allow the identification of rare
transcript variants that should be used
for improving gene explanation.
TILLING and EcoTILLING an
attractive  strategy with  genome
sequencing can generate and identify
new alleles, which become source of
variation in breeding population.
Combination of various techniques
showing in Figure 2 (Varshney et al.,
2005), which includes novel genetic

tools and modern genetic and breeding
approaches increase efficiency and
precision that have a great potential to
impact crop breeding. Due to reduced
costs on sequencing and genotyping
combined with advances in biometrics

and bioinformatics, we envisage a

bright future on applications of these

novel approaches in plant breeding.
ABBREVIATIONS

AB-QTL = Advanced-backcross QTL

ECOTILLING = Ecotype TILLING

GEBV = Genomic estimated breeding

value

GS = Genomic selection

GWA = Genome-wide association

MABC = Marker assisted back

crossing

MAS = Marker assisted selection

MGWAS = Metabolomics genome-

wide association study

mQTL = Metabolomics QTL

NGS = Next generation sequencing

QTL = Quantitative Trait Locus

TILLING = Targeting induced local

lesions on genomes

CONCLUSION
Recent advances in genomics
are providing plant breeders with new

tools and methodologies that allow a

great leap forward in plant breeding

and the genetic dissection and breeding
for complex traits.
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Table 1: List of some important bioinformatics tools and databases

Database Description URL
CotthonDB Cotton information resource http://cottondb.org/
CropNet Genomic plant database http://ukcrop.net/
Gramene Grass information resource http ://www.gramene.org/
PlantMarkers A database of predicted plant | http://markers.btk.fi/
molecular markers
NCBI Public databases and software | http://www.ncbi.nih.gov/
tools
TASSEL software package http ://www.maizegenetics.net/bioi

nformatics/tasselindex.htm
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Figure 1: Genomic selection (GS) processes starting from the training population
and selection candidates continuing through to genomic estimated

breeding value (GEBV)-based selection
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Figure 2: An integrated view of exploitation of genomic resources for crop improvement via different genetic and genomic strategies.
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